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This experiment demonstrates the use of pulsed NMR to implement a two qubit quantum com-
puter. Pulsed NMR is performed on a 7% 13CHCl3 (chloroform) sample. The hydrogen and carbon
nuclei in the sample have different Larmor frequencies, allowing the nucleons to be independently
rotated. Quantum operations are performed by applying series of rotations to the each qubit. Pure
initial states are constructed using temporal averaging on the thermal state of the system. The
thermal state ratio of peak integrals deviate from the expected theoretical thermal values state by
1.5% and the pure state ratios differ by 20%. The pure initial states are used to demonstrate a
CNOT gate that differs from the theoretical peak integral ratios by 20%. Using the CNOT gate, the
Deutsch-Jozsa algorithm for determining balance of a single-bit function is performed for each of
the four possible logical functions. The Deutsch-Jozsa algorithm is shown to behave as theoretically
predicted.

1. INTRODUCTION

This experiment demonstrates the pulsed NMR
method for performing quantum calculations on two
qubits. Pulsed NMR is performed independently on en-
sembles of hydrogen and carbon nuclei[1] within a sam-
ple of chloroform. Hydrogen and carbon nuclei ensembles
are manipulated first into the four possible pure states.
Once the pure states have been obtained, quantum op-
erations are performed to demonstrate logic gates. The
logic gates are combined to execute the Deutsch-Jozsa al-
gorithm. The Deutsch Jozsa algorithm is provably faster
than its classical counterpart.

2. CLASSICAL AND QUANTUM COMPUTING

Classical computations are performed using electrical
pulses. The pulses are sent through circuitry that can
produce either on or off signals based on the input. The
on and off signals represent bits. In quantum comput-
ing, bits are replaced with qubits. Instead of on and
off electrical pulses, qubits are the spins of molecules.
This experiment demonstrates a two qubit quantum com-
puter. To introduce the notation, wavefunctions of the
two qubits will be represented as the ket |HC〉. NMR
is used to manipulate the spin of the hydrogen and car-
bon nuclei. Since protons are spin 1

2 particles,each of

the two qubits can be either in a + 1
2 state, a − 1

2 state,
or a superpostition of the two. Superposition states are
not observable in this experiment, so the two observable
states will be represented as 0 and 1 respectively. There
are four possible pure states for the system, |00〉, |01〉,
|10〉, and |11〉[2], but many other mixed states. Produc-
ing pure states from the thermal initial state is the first
experimental Quantum logic operations are performed
only pure states to produce meaningful results.
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2.1. Rotation Matrices for Quantum Logic Gates

In this experiment, nuclear magnetic resonance is used
to perform operations, so the operations are rotations.
Performing rotations about the x̂, ŷ and ẑ axes on the
state |00〉 allows the creation of of the remaining three
pure states. The method for obtaining the state |00〉 will
be discussed in Sec. 4.

The state |00〉 is the matrix with a 1 in the the top-
leftmost entry of a 4x4 density matrix. A rotation matrix,
like

Ry1(π) =
1

2

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1


2

(1)

can be used to modify a state. For example,

Ry1(π)|00〉 = |01〉 (2)

Ry1(π) means a rotation about the ŷ axis on the car-
bon nuclei, of π radians. Using similar rotation matrices
other, and more interesting computations can be per-
formed.

2.2. Quantum Mechanical System

The Hamiltonian for the two qubit quantum system is
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(3)

Here the P (t) terms are classical terms that control a
single qubit each, and the Jσ1

zσ
2
z term is the spin-spin

coupling. The the P (t) terms are turned off during free
evolution, leaving the Jσ1

zσ
2
z term to dominate. When

single qubit rotations are performed the appropriate P (t)
term is taken to be much larger than J , such that the
interaction term can be neglected.
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In Out

H C H C

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

TABLE I: Truth table for quantum CNOT gate

FIG. 1: The block diagram for the Deutsch-Jozsa algorithm.
Unlike an equivalent classical computing algorithm to perform
the same function, the Deutsch-Jozsa algorithm requires only
one evaluation of the input function. This diagram is taken
from Chuang. [3]

2.2.1. CNOT Gate

One of the quantum operations is CNOT. A CNOT
operation is similar to a classical XOR. XOR, represented
by ⊕, is 0 if two input bits are the same, and one if
the input bits are different. The quantum cnot similarly
takes two bits as input, but it produces two output bits.
The truth table for CNOT is shown in Tab. 2.2.1. A
quantum cnot is performed with a series of rotations that
can be calculated. CNOT was determined to be

UCNOT = Rx1(π)Ry1(π)Rx1(
π

2
)Ry1(−π

2
)

Ry2(
π

2
)Rx2(

π

2
)Ry2(−π

2
)τRx1(π)Ry1(

π

2
).

Where τ is the delay in milliseconds for which the system
is allowed to undergo free evolution. During this time,
the spin-spin interaction term of the Hamiltonian, Eq.
3, dominates. The value of τ is determined by the spin-
coupling constant J , introduced above. Its value is τ =
1
J .

2.3. Deutsch Jozsa Algorithm

The Deutsch-Jozsa algorithm was one of the first algo-
rithms that is provably faster than an equivalent classical
computing algorithm. It is a method to evaluate whether
a given single bit function is balanced or constant. As in
the classical method, the Deutsch-Jozsa algorithm eval-
uates f(0) ⊕ f(1). If the function is constant f(0) and
f(1) will have the same value, so the XOR operation will

produce a 0. If the function is balanced, then f(0) and
f(1) will have opposite values, so the XOR produces a
1. The quantum algorithm is provably faster because it
only needs to evaluate the function once. The classical
method must evaluate the function twice, once for f(0)
and once for f(1). Since there are exactly four possible
functions that take a single bit as input and produce a
single bit as output, the Deutsch-Jozsa can be studied
and confirmed for this simplest case. The block diagram
for the Deutsch-Jozsa is shown in 1.

The Deutsch-Jozsa algorithm for single qubit functions
requires two qubits: one qubit as input and one to eval-
uate with. During execution both bits are changed. The
input qubit is returned to its initial state before execu-
tion is complete. There are four steps to evaluate the
algorithm. First, perform a rotation about the y axis
on the input qubit to transform the state from |00〉 to
1√
2
(|0〉+ |1〉)⊗|0〉. Simultaneously perform a rotation by

the same amount, about the −y axis on the second qubit.
This produces the state 1

2 [(|0〉+ |1〉)⊗ (|0〉 − |1〉)]. Next
call the single qubit function, and apply it to the input
qubit, add the result to the second qubit. Since the in-
put bit is simultaneously 0 and 1, the function must only
be executed once. The function must be implemented in
a unitary and reversible way. This puts the system in
the state 1

2

[(
−1f(0)|0〉+−1f(1)|1〉

)
⊗ (|0〉 − |1〉)

]
. The

final step is to take the reverse transformations of those
performed in the initial step. This removes the superpo-
sition for both the input bit and the second bit, leaving
the system in the final state

1

2

[(
(−1)f(0) + (−1)f(1)

)
|0〉+

(
−(−1)f(0) + (−1)f(1)

)
|1〉
]
⊗|0〉

(4)
This state expresses the result of the Deutsch-Jozsa in the
first qubit. If the function is constant then (−1)f(0) +
(−1)f(1) = ±2 and −(−1)f(0) + (−1)f(1) = 0, so the
resulting state is |00〉. If the function is balanced, then
−(−1)f(0) + (−1)f(1) = ±2 and (−1)f(0) + (−1)f(1) = 0,
so the resulting state is |10〉.

Implementing the pulse sequence

Ry1Rȳ2UfkRȳ1Ry2 (5)

on a state |00〉 will yield |00〉 if the function is constant
and |10〉 if the function is balanced [3].

3. EXPERIMENTAL SETUP

As demonstrated above quantum operations are ma-
trices and operators for interesting computations can be
built out of rotation matrices. NMR allows the rotation
of nucleon spins. A two qubit system is implemented by
performing NMR on a sample that contains two distinct
elements. In this case, the sample is 7% 13CHCl3. The
sample is placed in a large homogenous magnetic field
and a small oscillating rf field is applied to either nu-
cleon. The rf pulses are applied to rotate the hydrogen
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FIG. 2: Experimental apparatus.

and carbon nucleons independently. Measurements are
Fourier transforms of the free induction decays produced
in the NMR spectrometer.

3.1. Experimental Apparatus

Pulsed NMR is performed using a 200MHz Bruker
NMR Spectrometer. The large magnetic field is produced
by a cryomagnet cooled with both liquid hydrogen and
liquid nitrogen. The magnetic field is homogenous to one

part in 109

cm3 . There are two independent pulse generators
and a control system for the magnet. All three are con-
nected to a controlling computer. Interaction with the
spectrometer occurs through pulse-program scripts writ-
ten in and run on Matlab.

4. DATA AND ANALYSIS

The pure states necessary to test the CNOT gate and
Deutsch-Jozsa algorithm are obtained through tempo-
ral averaging. Temporal averaging requires three experi-
ments. Each experiment is one permutation of the ther-
mal state. Permutations are performed by acting near-
CNOTs on the thermal state. Near-cnot operations are
performed instead of cnots because near-cnots take less
time and the phases in the permutations do not matter.
The results of the three permutations are combined lin-
early, and this linear combination produces an effectively
pure state.

State measurements are obtained by performing a
readout pulse Rx(π2 ) on each qubit. The readout pulse
produces the spectra data shown in Figs. 4-7. The spin-
spin coupling between the carbon and hydrogen produces
two spectra peaks in each hydrogen and carbon spectrum.
The distance between the two peaks is determined by J
from the Hamiltonian, Eq. 3.

Each pure state was fit to a real valued Lorentzian,

f(x) = Re
(

αΓ
i(ω−ω0)+Γ

)
. On each graph the peak inte-

grals are shown above χ2.

H C
|00>

(a)|00〉

H C
|01>

(b)|01〉

H C
|10>

(c)|10〉

H C
|11>

(d)|11〉

FIG. 3: Theoretically predicted pure state spectra. Readout
pulses produce hydrogen peaks a − c and b − d and carbon
peaks a−b and c−d, where a, b, c, d are the diagonal elements
of a density matrix.

(a)Hydrogen Spectrum (b)Carbon Spectrum

FIG. 4: Example of a pure state, |10〉. State is obtained
by performing temporal averaging on the thermal state and
applying a pulse Rx1(π).

4.1. Calibration

Calibration of the experimental apparatus was done
prior to taking each set of data. Calibrations were per-
formed to measure 90◦ pulse widths for both hydrogen
and carbon, phase reference angles to produce spectra
with <10% imaginary components, the separation be-
tween the peaks in each spectrum (determining J), and
the spin-lattice relaxation time[4] of each qubit.

90◦ pulse widths were determined to be 7.440± .004µs
for hydrogen, and 8.200± .008µs for carbon. The errors
are due to statistical error over three trials.

Pulse separation, J from Eq. 3, was measured to be
J = 216 ± 17Hz. This is a dominant source of error in
the experiment.

Spin-lattice relaxation time was determined to be T1 =
17± .6 s for hydrogen and T1 = 12± .4s for carbon.
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(a)Hydrogen Spectrum (b)Carbon Spectrum

FIG. 5: CNOT acting on the state |10〉. The second negative
amplitude peak in both the H and C spectra indicate that the
sample is in the state |11〉. This is the expected result, and
support the hypothesis that CNOT can be implemented with
an NMR quantum computer.

4.2. Pure States

Temporal averaging is used to effectively create the
state |00〉. To obtain the states |01〉, |10〉 and |11〉 rota-
tions are performed on the appropriate bits of the |00〉
state. The theoretically predicted expected spectra for
each of the four pure states is shown in Fig. 3.

For example, to obtain the state 10〉, Ry1(π)|00〉 =
|10〉. This pure state is shown in Fig. 4.

Three trials were taken for each of the four states. The
statistical random error (shown as errorbars in Fig. 4)
was calculated by taking the standard deviation over the
three trials for each state. Systematic errors will be dis-
cussed in Sec. 4.5

4.3. CNOT

CNOT was performed on each pure state, and the ex-
pected output is shown in Tab. 2.2.1. The pulse sequence
for CNOT on a state is shown in Eq. 4. For each of the
four pure states, CNOT trials were run three times. Data
for CNOT on |10〉 is shown in Fig. 5.

4.4. Deutsch-Jozsa Algorithm

Experiments were performed with Deutsch-Jozsa for
each of the four possible logical functions. As explained
above, the pulse sequence for the Deutsch-Jozsa algo-
rithm is Eq. 5. As expected, the data obtained was

confirmed to be identical for the two constant functions,
f1 and f2 and identical for the two balanced functions,
f3 and f4. An example of each is shown. The constant
function data is shown in Fig. 6, and the balanced func-
tion data is shown in Fig. 7. Results were found to agree
with the theoretical predictions.

4.5. Sources of Error and Error Analysis

Statistical random error is shown as error bars on each
graph. Fits were performed by minimizing χ2 on the
analytical Lorentzian. The most significant contribution
to the statistical error is the inhomogeneity of the field
applied by the rf pulses. An additional smaller contri-
bution is made by the instability of power running the
spectrometer[5].

Systematic error was accounted for by calculating the
peak integrals on each of the pure state fits and then
the ratio between the peak integrals for each spectrum.
Comparing these experimental peak integral ratios with
the theoretical peak integral ratios provides a percentage
error. Given more time in this experiment standard de-
viations could be calculated from thresholds on the peak
integral ratios. The thermal state peak integrals were
calculated to deviate by 1.5% from the expected value.
The CNOT peak integrals and pure state peak integrals
were calculated to each deviate by 20% from the theo-
retical expected values. The largest source of systematic
error is the measurement of J .

5. CONCLUSIONS

The use of pulsed NMR to implement a two qubit
quantum computer is demonstrated. Quantum opera-
tions are successfully performed by applying series of ro-
tations to the each qubit. Pure initial states are con-
structed using temporal averaging on the thermal state of
the system. The thermal state ratio of peak integrals de-
viate from the expected theoretical thermal values state
by 1.5% and the pure state ratios differ by 20%. The
pure initial states are used to demonstrate a CNOT gate
that differs from the theoretical peak integral ratios by
20%. Using the CNOT gate, the Deutsch-Jozsa algo-
rithm for determining balance of a single-bit function is
performed for each of the four possible logical functions.
The Deutsch-Jozsa algorithm is shown to behave as the-
oretically predicted.
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(a)Hydrogen Spectrum (b)Carbon Spectrum

FIG. 6: The Deutsch-Josza algorithm acting on f1, a constant
function. The expected result is |00〉. The positive magnitude
peak in each of the H and C spectra identify that the sample
is in the state |00〉, confirming the hypothesis.

(a)Hydrogen Spectrum (b)Carbon Spectrum

FIG. 7: The Deutsch-Josza algorithm acting on f3, a balanced
function. The expected result is |10〉. The negative magnitude
hydrogen peak and positive magnitude carbon peak identify
that the sample is in the state |10〉, confirming the hypothesis.
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